Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7998): 385-391, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096903

RESUMO

A limitation of current SARS-CoV-2 vaccines is that they provide minimal protection against infection with current Omicron subvariants1,2, although they still provide protection against severe disease. Enhanced mucosal immunity may be required to block infection and onward transmission. Intranasal administration of current vaccines has proven inconsistent3-7, suggesting that alternative immunization strategies may be required. Here we show that intratracheal boosting with a bivalent Ad26-based SARS-CoV-2 vaccine results in substantial induction of mucosal humoral and cellular immunity and near-complete protection against SARS-CoV-2 BQ.1.1 challenge. A total of 40 previously immunized rhesus macaques were boosted with a bivalent Ad26 vaccine by the intramuscular, intranasal and intratracheal routes, or with a bivalent mRNA vaccine by the intranasal route. Ad26 boosting by the intratracheal route led to a substantial expansion of mucosal neutralizing antibodies, IgG and IgA binding antibodies, and CD8+ and CD4+ T cell responses, which exceeded those induced by Ad26 boosting by the intramuscular and intranasal routes. Intratracheal Ad26 boosting also led to robust upregulation of cytokine, natural killer, and T and B cell pathways in the lungs. After challenge with a high dose of SARS-CoV-2 BQ.1.1, intratracheal Ad26 boosting provided near-complete protection, whereas the other boosting strategies proved less effective. Protective efficacy correlated best with mucosal humoral and cellular immune responses. These data demonstrate that these immunization strategies induce robust mucosal immunity, suggesting the feasibility of developing vaccines that block respiratory viral infections.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunidade nas Mucosas , Imunização Secundária , Macaca mulatta , SARS-CoV-2 , Animais , Humanos , Administração Intranasal , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Citocinas/imunologia , Imunidade nas Mucosas/imunologia , Imunização Secundária/métodos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Injeções Intramusculares , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Traqueia/imunologia , Traqueia/virologia
2.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38076895

RESUMO

SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, there's a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.

3.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986823

RESUMO

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

4.
Cell ; 186(21): 4652-4661.e13, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37734373

RESUMO

The mpox outbreak of 2022-2023 involved rapid global spread in men who have sex with men. We infected 18 rhesus macaques with mpox by the intravenous, intradermal, and intrarectal routes and observed robust antibody and T cell responses following all three routes of infection. Numerous skin lesions and high plasma viral loads were observed following intravenous and intradermal infection. Skin lesions peaked on day 10 and resolved by day 28 following infection. On day 28, we re-challenged all convalescent and 3 naive animals with mpox. All convalescent animals were protected against re-challenge. Transcriptomic studies showed upregulation of innate and inflammatory responses and downregulation of collagen formation and extracellular matrix organization following challenge, as well as rapid activation of T cell and plasma cell responses following re-challenge. These data suggest key mechanistic insights into mpox pathogenesis and immunity. This macaque model should prove useful for evaluating mpox vaccines and therapeutics.


Assuntos
Macaca mulatta , Monkeypox virus , Animais , Humanos , Masculino , Homossexualidade Masculina , Minorias Sexuais e de Gênero , Monkeypox virus/fisiologia
5.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503026

RESUMO

SARS-CoV-2 has the capacity to evolve mutations to escape vaccine-and infection-acquired immunity and antiviral drugs. A variant-agnostic therapeutic agent that protects against severe disease without putting selective pressure on the virus would thus be a valuable biomedical tool. Here, we challenged rhesus macaques with SARS-CoV-2 Delta and simultaneously treated them with aerosolized RBD-62, a protein developed through multiple rounds of in vitro evolution of SARS-CoV-2 RBD to acquire 1000-fold enhanced ACE2 binding affinity. RBD-62 treatment gave equivalent protection in upper and lower airways, a phenomenon not previously observed with clinically approved vaccines. Importantly, RBD-62 did not block the development of memory responses to Delta and did not elicit anti-drug immunity. These data provide proof-of-concept that RBD-62 can prevent severe disease from a highly virulent variant.

6.
Cell Rep Med ; 4(4): 101018, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37023746

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines demonstrate reduced protection against acquisition of BA.5 subvariant but are still effective against severe disease. However, immune correlates of protection against BA.5 remain unknown. We report the immunogenicity and protective efficacy of vaccine regimens consisting of the vector-based Ad26.COV2.S vaccine and the adjuvanted spike ferritin nanoparticle (SpFN) vaccine against a high-dose, mismatched Omicron BA.5 challenge in macaques. The SpFNx3 and Ad26 + SpFNx2 regimens elicit higher antibody responses than Ad26x3, whereas the Ad26 + SpFNx2 and Ad26x3 regimens induce higher CD8 T cell responses than SpFNx3. The Ad26 + SpFNx2 regimen elicits the highest CD4 T cell responses. All three regimens suppress peak and day 4 viral loads in the respiratory tract, which correlate with both humoral and cellular immune responses. This study demonstrates that both homologous and heterologous regimens involving Ad26.COV2.S and SpFN vaccines provide robust protection against a mismatched BA.5 challenge in macaques.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Humanos , Animais , Macaca , Ad26COVS1 , COVID-19/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Ferritinas
7.
bioRxiv ; 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35982683

RESUMO

Despite effective countermeasures, SARS-CoV-2 persists worldwide due to its ability to diversify and evade human immunity1. This evasion stems from amino-acid substitutions, particularly in the receptor-binding domain of the spike, that confer resistance to vaccines and antibodies 2-16. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different receptor binding domain (RBD) sites17,18 into multispecific antibodies. Here, we describe multispecific antibodies, including a trispecific that prevented virus escape >3000-fold more potently than the most effective clinical antibody or mixtures of the parental antibodies. Despite being generated before the evolution of Omicron, this trispecific antibody potently neutralized all previous variants of concern and major Omicron variants, including the most recent BA.4/BA.5 strains at nanomolar concentrations. Negative stain electron microscopy revealed that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated inter-spike binding. An optimized trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2 and BA.5, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. Such multispecific antibodies decrease the likelihood of SARS-CoV-2 escape, simplify treatment, and maximize coverage, providing a strategy for universal antibody therapies that could help eliminate pandemic spread for this and other pathogens.

8.
NPJ Vaccines ; 7(1): 85, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906244

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 global pandemic. SARS-CoV-2 is an enveloped RNA virus that relies on its trimeric surface glycoprotein spike for entry into host cells. Here we describe the COVID-19 vaccine candidate MV-014-212, a live, attenuated, recombinant human respiratory syncytial virus expressing a chimeric SARS-CoV-2 spike as the only viral envelope protein. MV-014-212 was attenuated and immunogenic in African green monkeys (AGMs). One mucosal administration of MV-014-212 in AGMs protected against SARS-CoV-2 challenge, reducing by more than 200-fold the peak shedding of SARS-CoV-2 in the nose. MV-014-212 elicited mucosal immunoglobulin A in the nose and neutralizing antibodies in serum that exhibited cross-neutralization against virus variants of concern Alpha, Beta, and Delta. Intranasally delivered, live attenuated vaccines such as MV-014-212 entail low-cost manufacturing suitable for global deployment. MV-014-212 is currently in Phase 1 clinical trials as an intranasal COVID-19 vaccine.

9.
PNAS Nexus ; 1(3): pgac091, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35873792

RESUMO

Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.

10.
PLoS Biol ; 20(5): e3001609, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35512013

RESUMO

Despite the rapid creation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vaccines, the precise correlates of immunity against severe Coronavirus Disease 2019 (COVID-19) are still unknown. Neutralizing antibodies represent a robust surrogate of protection in early Phase III studies, but vaccines provide protection prior to the evolution of neutralization, vaccines provide protection against variants that evade neutralization, and vaccines continue to provide protection against disease severity in the setting of waning neutralizing titers. Thus, in this study, using an Ad26.CoV2.S dose-down approach in nonhuman primates (NHPs), the role of neutralization, Fc effector function, and T-cell immunity were collectively probed against infection as well as against viral control. While dosing-down minimally impacted neutralizing and binding antibody titers, Fc receptor binding and functional antibody levels were induced in a highly dose-dependent manner. Neutralizing antibody and Fc receptor binding titers, but minimally T cells, were linked to the prevention of transmission. Conversely, Fc receptor binding/function and T cells were linked to antiviral control, with a minimal role for neutralization. These data point to dichotomous roles of neutralization and T-cell function in protection against transmission and disease severity and a continuous role for Fc effector function as a correlate of immunity key to halting and controlling SARS-CoV-2 and emerging variants.


Assuntos
COVID-19 , Ad26COVS1 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Primatas , Receptores Fc , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
11.
Cell ; 185(9): 1549-1555.e11, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35427477

RESUMO

The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. In this study, we show that the mRNA-based BNT162b2 vaccine and the adenovirus-vector-based Ad26.COV2.S vaccine provide robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in cynomolgus macaques. We vaccinated 30 macaques with homologous and heterologous prime-boost regimens with BNT162b2 and Ad26.COV2.S. Following Omicron challenge, vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs. However, 4 vaccinated animals that had moderate Omicron-neutralizing antibody titers and undetectable Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Moreover, virologic control correlated with both antibody and T cell responses. These data suggest that both humoral and cellular immune responses contribute to vaccine protection against a highly mutated SARS-CoV-2 variant.


Assuntos
Ad26COVS1/imunologia , Vacina BNT162/imunologia , COVID-19 , Macaca , SARS-CoV-2 , Ad26COVS1/administração & dosagem , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162/administração & dosagem , COVID-19/imunologia , COVID-19/prevenção & controle , Linfócitos T/imunologia
12.
Cell ; 185(9): 1556-1571.e18, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447072

RESUMO

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-matched vaccines would enhance protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing titers against D614G were 4,760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (preboost), respectively, and 320 and 110 for Omicron. 2 weeks after the boost, titers against D614G and Omicron increased to 5,360 and 2,980 for mRNA-1273 boost and 2,670 and 1,930 for mRNA-Omicron, respectively. Similar increases against BA.2 were observed. Following either boost, 70%-80% of spike-specific B cells were cross-reactive against WA1 and Omicron. Equivalent control of virus replication in lower airways was observed following Omicron challenge 1 month after either boost. These data show that mRNA-1273 and mRNA-Omicron elicit comparable immunity and protection shortly after the boost.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Macaca , RNA Mensageiro
13.
Sci Adv ; 8(11): eabl6015, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35294244

RESUMO

Authorized vaccines against SARS-CoV-2 remain less available in low- and middle-income countries due to insufficient supply, high costs, and storage requirements. Global immunity could still benefit from new vaccines using widely available, safe adjuvants, such as alum and protein subunits, suited to low-cost production in existing manufacturing facilities. Here, a clinical-stage vaccine candidate comprising a SARS-CoV-2 receptor binding domain-hepatitis B surface antigen virus-like particle elicited protective immunity in cynomolgus macaques. Titers of neutralizing antibodies (>104) induced by this candidate were above the range of protection for other licensed vaccines in nonhuman primates. Including CpG 1018 did not significantly improve the immunological responses. Vaccinated animals challenged with SARS-CoV-2 showed reduced median viral loads in bronchoalveolar lavage (~3.4 log10) and nasal mucosa (~2.9 log10) versus sham controls. These data support the potential benefit of this design for a low-cost modular vaccine platform for SARS-CoV-2 and other variants of concern or betacoronaviruses.

14.
ACS Infect Dis ; 8(4): 825-840, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263081

RESUMO

FDA-approved and emergency use-authorized vaccines using new mRNA and viral-vector technology are highly effective in preventing moderate to severe disease; however, information on their long-term efficacy and protective breadth against severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) is currently scarce. Here, we describe the durability and broad-spectrum VOC immunity of a prefusion-stabilized spike (S) protein adjuvanted with liquid or lyophilized CoVaccine HT in cynomolgus macaques. This recombinant subunit vaccine is highly immunogenic and induces robust spike-specific and broadly neutralizing antibody responses effective against circulating VOCs (B.1.351 [Beta], P.1 [Gamma], and B.1.617 [Delta]) for at least three months after the final boost. Protective efficacy and postexposure immunity were evaluated using a heterologous P.1 challenge nearly three months after the last immunization. Our results indicate that while immunization with both high and low S doses shorten and reduce viral loads in the upper and lower respiratory tract, a higher antigen dose is required to provide durable protection against disease as vaccine immunity wanes. Histologically, P.1 infection causes similar COVID-19-like lung pathology as seen with early pandemic isolates. Postchallenge IgG concentrations were restored to peak immunity levels, and vaccine-matched and cross-variant neutralizing antibodies were significantly elevated in immunized macaques indicating an efficient anamnestic response. Only low levels of P.1-specific neutralizing antibodies with limited breadth were observed in control (nonvaccinated but challenged) macaques, suggesting that natural infection may not prevent reinfection by other VOCs. Overall, these results demonstrate that a properly dosed and adjuvanted recombinant subunit vaccine can provide protective immunity against circulating VOCs for at least three months.


Assuntos
COVID-19 , SARS-CoV-2 , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca , Vacinas de Subunidades Antigênicas
15.
bioRxiv ; 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35169798

RESUMO

BACKGROUND: The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. Immune correlates of vaccine protection against Omicron are not known. METHODS: 30 cynomolgus macaques were immunized with homologous and heterologous prime-boost regimens with the mRNA-based BNT162b2 vaccine and the adenovirus vector-based Ad26.COV2.S vaccine. Following vaccination, animals were challenged with the SARS-CoV-2 Omicron variant by the intranasal and intratracheal routes. RESULTS: Omicron neutralizing antibodies were observed following the boost immunization and were higher in animals that received BNT162b2, whereas Omicron CD8+ T cell responses were higher in animals that received Ad26.COV2.S. Following Omicron challenge, sham controls showed more prolonged virus in nasal swabs than in bronchoalveolar lavage. Vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs, showing that current vaccines provide substantial protection against Omicron in this model. However, vaccinated animals that had moderate levels of Omicron neutralizing antibodies but negligible Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Virologic control correlated with both antibody and T cell responses. CONCLUSIONS: BNT162b2 and Ad26.COV2.S provided robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in macaques. Protection against this highly mutated SARS-CoV-2 variant correlated with both humoral and cellular immune responses.

16.
Cell ; 185(1): 113-130.e15, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34921774

RESUMO

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by ∼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

17.
J Virol ; 96(2): e0159921, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705557

RESUMO

Live oral vaccines have been explored for their protective efficacy against respiratory viruses, particularly for adenovirus serotypes 4 and 7. The potential of a live oral vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, remains unclear. In this study, we assessed the immunogenicity of live SARS-CoV-2 delivered to the gastrointestinal tract in rhesus macaques and its protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge. Postpyloric administration of SARS-CoV-2 by esophagogastroduodenoscopy resulted in limited virus replication in the gastrointestinal tract and minimal to no induction of mucosal antibody titers in rectal swabs, nasal swabs, and bronchoalveolar lavage fluid. Low levels of serum neutralizing antibodies were induced and correlated with modestly diminished viral loads in nasal swabs and bronchoalveolar lavage fluid following intranasal and intratracheal SARS-CoV-2 challenge. Overall, our data show that postpyloric inoculation of live SARS-CoV-2 is weakly immunogenic and confers partial protection against respiratory SARS-CoV-2 challenge in rhesus macaques. IMPORTANCE SARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution, and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations; however, no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Here, we report that oral administration of live SARS-CoV-2 in nonhuman primates may offer prophylactic benefits, but the formulation and route of administration will require further optimization.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Administração Oral , Animais , Feminino , Macaca mulatta , Masculino , Eficácia de Vacinas
18.
Nature ; 601(7893): 410-414, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794169

RESUMO

The CVnCoV (CureVac) mRNA vaccine for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was recently evaluated in a phase 2b/3 efficacy trial in humans1. CV2CoV is a second-generation mRNA vaccine containing non-modified nucleosides but with optimized non-coding regions and enhanced antigen expression. Here we report the results of a head-to-head comparison of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in non-human primates. We immunized 18 cynomolgus macaques with two doses of 12 µg lipid nanoparticle-formulated CVnCoV or CV2CoV or with sham (n = 6 per group). Compared with CVnCoV, CV2CoV induced substantially higher titres of binding and neutralizing antibodies, memory B cell responses and T cell responses as well as more potent neutralizing antibody responses against SARS-CoV-2 variants, including the Delta variant. Moreover, CV2CoV was found to be comparably immunogenic to the BNT162b2 (Pfizer) vaccine in macaques. Although CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded more robust protection with markedly lower viral loads in the upper and lower respiratory tracts. Binding and neutralizing antibody titres were correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of a non-modified mRNA SARS-CoV-2 vaccine in non-human primates.


Assuntos
Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Nucleosídeos/química , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de mRNA/genética , Vacinas de mRNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/normas , Feminino , Macaca fascicularis/imunologia , Masculino , Células B de Memória/imunologia , Nucleosídeos/genética , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinas Sintéticas/normas , Carga Viral , Vacinas de mRNA/normas
19.
NPJ Vaccines ; 6(1): 156, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930909

RESUMO

New generation plasmid DNA vaccines may be a safe, fast and simple emergency vaccine platform for preparedness against emerging viral pathogens. Applying platform optimization strategies, we tested the pre-clinical immunogenicity and protective effect of a candidate DNA plasmid vaccine specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The DNA vaccine induced spike-specific binding IgG and neutralizing antibodies in mice, rabbits, and rhesus macaques together with robust Th1 dominant cellular responses in small animals. Intradermal and intramuscular needle-free administration of the DNA vaccine yielded comparable immune responses. In a vaccination-challenge study of rhesus macaques, the vaccine demonstrated protection from viral replication in the lungs following intranasal and intratracheal inoculation with SARS-CoV-2. In conclusion, the candidate plasmid DNA vaccine encoding the SARS-CoV-2 spike protein is immunogenic in different models and confers protection against lung infection in nonhuman primates. Further evaluation of this DNA vaccine candidate in clinical trials is warranted.

20.
bioRxiv ; 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34729558

RESUMO

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. We immunized rhesus macaques at weeks 0 and 4 and assessed immune responses over one year in blood, upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID 50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody binding titers also decreased in bronchoalveolar lavage (BAL). Four days after challenge, virus was unculturable in BAL and subgenomic RNA declined ∼3-log 10 compared to control animals. In nasal swabs, sgRNA declined 1-log 10 and virus remained culturable. Anamnestic antibody responses (590-fold increase) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA